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Abstract
Android applications access native SQLite databases through
their Universal Resource Identifiers (URIs), exposed by the
Content provider library. By design, the SQLite engine used
in the Android system does not enforce access restrictions
on database content nor does it log database accesses. In-
stead, Android enforces read and write permissions on the
native providers through which databases are accessed via
the mandatory applications permissions system. This sys-
tem is very coarse grained, however, and can allow applica-
tions far greater access to sensitive data than a user might
intend.

In this paper, we present a novel technique called priVy
that merges static bytecode weaving and database query re-
writing to achieve low-level access control for Android na-
tive providers at the application level. priVy defines access
control for both database schema and entities and does not
require any modifications to the underlying operating sys-
tem and/or framework code. Instead, it provides a new
Controller stub which is statically woven into the target ap-
plication and a Controller interface for setting access levels,
thus making it accessible and easily adoptable by average
users. We provide an evaluation in terms of the resilience
of applications to instrumentation as well as static and run-
time instrumentation overhead. In our testing, priVy incurs
an average of 1032 additional method calls or joinpoints cre-
ated and it takes an average of 15 seconds to recompile an
app and imposes virtually no runtime overhead.

1. INTRODUCTION
Smartphone technology has not only revolutionized our

telephony experience, but has successfully integrated a vast
amount of personal data, including our address books, cal-
endars, diaries, pictures, etc. onto a single device. From a
security perspective, the ease and convenience provided by
this integration can have disastrous consequences, serving
as a single point of exposure for a tremendous amount of
personal data if not properly managed.
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Access to data and resources on Android systems is reg-
ulated by two important concepts, specifically, the permis-
sions model and application sandboxing. Third party ap-
plications are required to make explicit requests for permis-
sions at installation time and while this mechanism provides
a general idea of what an application can access on a de-
vice, it does not provide the ability to institute fine-grained
control over sensitive data. Essentially, it’s an all-or-nothing
model under which the user has to approve all permissions or
abort the installation of the application. Perhaps more dis-
turbing is that the approved permission(s) remain a right of
the installed application as long as it remains on the phone.

Android extends this model to cover structured data stored
in SQLite databases. However, it does not separate roles and
privileges on the database, nor does it protect content data
at the schema or entity levels. In fact, it does very little to
protect the privacy of the stored user data and its associ-
ated metadata. Such a wide level of access is tantamount
to giving the application administrative rights over the tar-
get provider. For example, this system does not distinguish
accesses to a contact’s phone number from the email and
physical addresses. Other important information like the
“last time contacted” as well as account type and names are
also easily accessible with a simple READ permission. Sim-
ilarly, write permission on the contacts provider allows an
application to insert, delete and modify any contact at will.
The application can also create groups and make them in-
visible. Such “perceived” benign access however can lead to
malicious contacts been created and synched to restricted
groups in major accounts like Google.

Looking at the bigger picture, the privacy violation scales
beyond the device user alone. It also exposes data associ-
ated with third parties to the prying eyes of malware and
other privacy-violating applications. For instance, clearly
mapped information like phone numbers, email and physical
addresses provide sufficient information about third parties
that they could be used to support targeted advertisement,
social engineering, surveillance, and physical attacks

Furthermore, due to the interconnectivity of the differ-
ent providers and their data, we have found the current ap-
proach to result in various forms of inferential permission
leaks. Other security breaches like denial of service due to
malformed SQL data are also possible.

To reduce the propensity of these problems and provide
users with additional control over the Android content providers,
Mutti et al [16] proposed an integration of SQLite and SELinux.
Based on context security, this system enforces fine grain
access control at the lowest level in the database. Unfor-



tunately, the solution requires extensive changes in the op-
erating system code to accommodate the security context
schema table and its corresponding library code. Given how
long it takes for Android to effect changes and for man-
ufacturers to integrate such solutions on existing systems,
techniques that require extensive OS modifications are not
viable, practical options for an average user.

To solve these problems, we developed a new technique
that enforces access restrictions, query-rewriting and database
access logging via static bytecode weaving. Our system,
called priVy, does not require any change to the Android
kernel and middleware. Furthermore, priVy does not treat
SQLite databases as a single information store with a sin-
gle set of access permissions; instead, it enforces restrictions
for different schema and entity levels by re-implementing
content provider library code using instrumentation at the
application level, based on user-provided access restrictions.
The new weaved checking code forces the application to ac-
cess only user-approved schema or entities, while maintain-
ing application integrity.

Contributions Our techniques provide the following unique
features:

• More control over data: priVy provides schema and
entity level access control for Android content providers
through method hooking, access constraint enforce-
ment, and query re-writing.

• Portability : Our scheme does not require changes to
the Android kernel and/or framework code, for maxi-
mum usability.

• Efficiency and Usability : Aside from minimal instru-
mentation overhead and better control over user data,
the use of priVy is virtually transparent.

The rest of the paper is organized as follows: Section 2
presents background on SQLite and Android content providers;
Section 3 provides an overview of possible threats and vul-
nerabilities on the content provider; Section 4 details the de-
sign of priVy ; Section 5 and 6 presents the implementation
and evaluation of our work respectively; Section 7 reviews
the related literature followed by section 8 that concludes
the paper.

2. BACKGROUND

2.1 SQLite Databases
SQLite is a single-user relational database management

system (RDMS) used for storing structured data. Unlike a
traditional RDMS, SQLite is a server-less database engine
that stores data in normal files. It manages access and con-
currency based on direct file reads and writes and operating
system-level file locks, respectively. SQLite is lightweight
and efficient and requires little configuration, making it the
database engine of choice on many operating systems, such
as Android and Apple’s iOS.

2.2 Android Native Providers
Android offers built-in native content providers that store

a variety of user data maintained by the system. Each is as-
sociated with at least one SQLite database that contains var-
ious tables, columns and entities. Some of the Android na-
tive providers are: Contacts, CallLog, VoiceMail, Browser,
Settings, Media and Dictionary.

These providers together with the content resolver provide
the basis for Android CRUD (Create, Read, Update, Delete)
operations, corresponding to SQL insert, query, update and
delete operations on database objects. The chain of events
for data access occurs at two levels. At a high level, ac-
cess begins with the resolver object invocation of one of the
CRUD functions, passing at least a Uri parameter, which
identifies the location of the required data. Other parame-
ters for CRUD functions include column name(s), a WHERE
clause, and order information. The resolver validates the Uri
and then passes the request to its provider. The provider
performs permission checks and if the requesting application
has the required permissions, it uses the function parameters
to construct an appropriate SQLiteStatement.

At a lower level, the SQLiteStatement is passed to the na-
tive content provider through the binder parcel. The native
library translates the parcel and sends the request to the
database engine, which then performs syntax and semantic
checks, expansion and code generation. The result is sent
back through the same route. In the case of read operations,
a database Cursor is returned, For write operations, an in-
teger indicating the number of entries affected is returned.

As discussed above, each of the CRUD operations triggers
permission checks by the content provider. Queries are pro-
tected by READ permission while insert, delete, and update
are guarded by WRITE permission. However, these coarse-
grained permissions do not distinguish database roles for
applications or privileges for individual data items. A sim-
ple READ permission allows access to all the tables, column
and rows in the entire database, while a simple WRITE
permission allows manipulation or deletion of any database
entities.

3. THREATS AND VULNERABILITIES
The coarse-grained access control for databases under An-

droid has serious security and privacy implications. In our
preliminary research, we analyzed the contacts database and
explored some issues associated with providing arbitrary ap-
plications with READ and WRITE access to this database.

3.1 Security Implications
Denial of Service: We explored a vulnerability with ac-

count types based on a malformed SQL statement that can
crash the acore process, resulting in denial of service on the
phone. A malicious app with WRITE permission can cre-
ate a new contact without the user’s knowledge under the
“com.google” account type with a malformed account-name
which contains a SQL terminator ”;”. The system will accept
the malformed account name at the time of insertion, but
after a while, Android will try to synchronize and delete bad
account names. When this occurs, the malformed account-
name will trigger a SQL exception in the SELECT statement
and crash both the contacts application and the acore pro-
cess. This key process is designed to automatically restart
after it is killed, however, the malformed name will cause it
to die once again. The repeated restart followed by crash of
acore results in a denial of service attack on the phone and
the only solution is to delete the entire contacts database,
causing a loss of all local contacts if the user has no backups
at hand.

Permission Leak: We also discovered that applications
with the READ-CONTACTS permission can infer the user
accounts on a device without requesting the GET-ACCOUNT



permission. If a contact belongs to an account, the account
name will be written alongside the contact in the RAW-
CONTACTS table. And since there is no restriction on
schema or column, an application can read the account name
and type for all the contacts on the phone.

Malicious Contact: Finally, an application with WRITE
access to the contacts can add a new contact under a par-
ticular account and group without restriction. When that
account is synced, the contact gets pushed on to the server.
This becomes a serious problem if, for example, the contact
is pushed into an important work group that shares confi-
dential information or if a contact’s email address is secretly
updated, to facilitate a targeted attack.

3.2 Privacy Concerns
Applications with appropriate coarse-grained permissions

can read clearly mapped data containing names, phone num-
bers, email and physical addresses, and even IM status. This
data can clearly distinguish an individual and be used for an-
noying advertisement or targeted social engineering attacks.
Worse, information such as “last time contacted” can pro-
vide inferential information about call logs without having
the CALL-LOG permission.

3.3 Forensic Concerns
With WRITE permission, update, insert, and delete database

operations can be performed by an application with very
little data available to support attribution, since Android
produces no audit logs associated with database operations.
This is primarily because SQLite is a single user system and
is not designed to keep track of who performs what opera-
tions on a system. For forensics investigation, this makes it
very hard to ascertain if a particular entry in the database is
added or updated by the user or by a malicious application.

4. SYSTEM DESIGN
Our goal is to define low-level access controls for Android’s

native content providers and enforce these access controls for
third party applications. This will ensure that users have
tight control over read/write accesses on sensitive data for
instrumented applications.

priVy is comprised of two components, a Controller app
and Controller stub. The Controller app is an independent
application running in a different process that registers an
instrumented application and sets up and manages its access
levels. The stub provides the weaved code that forces the in-
strumented app to verify access levels at startup, enforce ac-
cess constraints, perform query-rewriting as necessary, and
effect database auditing. The architecture of priVy is illus-
trated in Figure 1.

4.1 Controller Stub
Our approach uses the AspectJ instrumentation frame-

work [14] to insert and enforce fine level access verifica-
tion, query re-writing and database auditing for Android’s
native providers. AspectJ is an aspect-oriented program-
ming (AOP) extension developed specifically for Java that
allows cross-cutting concerns defined as aspects to be stati-
cally weaved into either raw Java source code or a compiled
class. Our system employs a well known AspectJ compiler
called ajc [1] to perform the application repackaging of An-
droid binaries with our specially crafted, modularized as-
pects. Unlike most instrumentation libraries, AspectJ can

perform highly optimized code injection at runtime, making
it an ideal choice for our system. It can manipulate param-
eters, return values, and target objects, and new code can
be inserted to run alongside or replace an existing method
implementation based on some static or runtime condition.

In aspect-oriented programming, a joinpoint is an identifi-
able construct within program execution, e.g., a method call,
while a pointcut is a program element which defines a join-
point via a signature pattern. These signatures can contain
modifier, type, id or throw patterns. The weaving process in
static instrumentation creates and manages joinpoints based
on these predefined signatures at compilation time. When
a certain joinpoint is reached at runtime, AspectJ executes
the encapsulated analysis routine called the advice defined
for it. In priVy, this contains the newly inserted policy and
query-rewriting code.

Depending on the cross cutting concern, signatures can
be made very broad using wildcards or specific with direct
package names, return types and parameter types. In priVy,
we designed signatures for Android packages related to data
access on SQLite databases. The three most important are
Database, Content Provider and Resolver. The database
package hosts the main SQLite database object and cor-
responding methods to query it in raw form. It also pro-
vides the Cursor interface for reading the results of database
queries. It is important to note that Android does not sup-
port direct raw access for databases associated with an ap-
plication with a different uid. Access to such data can only
be provided via the Uri of the target Content provider. The
provider classes expose data of one app to the code executing
in a different process.

Generic AspectJ advices were then developed around the
methods in the relevant classes from the packages discussed
above. These advices are encapsulated in an aspect which
is then statically recompiled into an Android binary. The
result is the same Android binary extended with our con-
troller stub. This static instrumentation process intercepts
the resolver CRUD functions and inserts the controller code
where necessary. As mentioned in Section 2, direct access to
native databases is completely prohibited by Android and
access is only available through the exposed native content.
Thus, it is relatively convenient for us to develop specific
signatures corresponding to only the resolver and provider
packages.

As shown in Table 1, insertion operations can be per-
formed in three different ways, either via a single insert,
bulk insert, or using a content provider operation. Delete,
update, and query operations can each be performed in two
different ways. Our signatures take into account all these
and we target the respective joinpoints accordingly.

AOP exposes three different ways to weave the checking
code, either as “before”, “after” or “around” advice. The “be-
fore” advice inserts new code before the joinpoint, thus its
execution precedes that of the joinpoint. The “after” ad-
vice prepends the code beneath the joinpoint’s code, while
the “around” advice inserts it within the joinpoint’s imple-
mentation. With the exception of adding auditing log en-
tries, where code is inserted using “after” advice, all other
code that performs constraint checks and query-rewriting
uses “around” advice, which can perform code injection in
the middle of method execution and allows manipulation of
target object, parameter(s) and return value. This enables
us to generate the correct return values in case a query is



Figure 1: priVy’s System Architecture.

blocked or restricted. It also allows us to enforce constraints
and reflectively perform new method invocation on an al-
ready created object residing in memory.

4.1.1 Access Verification
At runtime, when the instrumented app begins execution,

the controller stub performs the access verification as illus-
trated in Figure 1. It reads and parses the assigned access
control for the target application from the world readable,
shared preferences XML file for the controller app. It sets up
the global variables for the access level, schema, and column
as well as entity privileges for each provider. The global
variables are used by the CRUD operation’s joinpoint to
determine how the method call will proceed when invoked.

The CRUD function’s access level can be ALL ALLOW,
ALL BLOCK and RESTRICT. The ALL ALLOW access
level, as the name implies, does not impose sanctions on the
joinpoint and simply allows it to proceed with its original
parameters. ALL BLOCK, on the other hand, completely
blocks the execution of a joinpoint. For ALL BLOCK, our
controller stub must ensure that the query is actually blocked
while not affecting application stability. We are able to
achieve this by ensuring the affected functions return ap-
propriate values as shown in Figure 2 for Query joinpoint.
Specifically, depending on the type of access functions, dif-
ferent actions must be taken:

1. Query and Insert: We transform the given Uri param-
eter of the function into an Entity Uri with appended
zero. For queries, the system proceeds with this spe-
cial entity Uri which in turn will force the return of
an empty cursor with at least header information. For
insert operations, the entity Uri gets returned and the
parameters are discarded.

2. Update and Delete: Functions performing update and

delete operations expect an integral return type indi-
cating how many rows were affected. We simply return
0, indicating that no rows were affected and thus the
program will continue to execute smoothly.

The RESTRICT option regulates access to database schema,
column and entities. In a relational database, a schema
represents a logical group of objects. In this paper we re-
strict the schema definition to the database tables available
through the content Uri, e.g., the contact table in “Con-
tacts.db” or the events table in “Calendar.db”. Also, we
logically include all objects in a table that can be grouped
by the same MIME types, like emails, phone numbers, and
addresses, as different schemas.

Thus, the schema restriction ensures an app only queries
from the approved tables or MIME type(s). Since most of
these MIME types have individual Uris assigned to them
through the CommonKind Uri, their schema restriction must
ensure a entity restriction on the main table as well. The
controller stub makes a decision to ALLOW, BLOCK or
REWRITE the query based on the schema restriction estab-
lished by the user. For example, if a user has a schema re-
striction set up to only allow access to email information and
and the app requests both email and phone numbers, priVy
must re-write the query such that only the email table gets
projected on the SQL statement. Furthermore, restrictions
can be imposed on database columns so that certain columns
are prohibited from being viewed by apps, e.g., account-type
and name, or an entity based on a column value.

Aside from the two mandates mentioned above for BLOCK
option, a third condition becomes necessary here, specifi-
cally, that priVy must ensure that any other part of the
application that depends on the return value of the function
does not crash. This is mostly an issue with query functions,
because they return a cursor and the program may have
been designed to access a particular column which may not



Table 1: Joinpoints Picked by priVy ’s Pointcut Signatures

Target Object Insert Update Query Delete
Content Resolver insert(..) update(..) query(..) delete(..)
Content Resolver bulkInsert(..)

ContentProviderOperation newInsert(..) newUpdate(..) newAssertQuery(..) newDelete(..)

pointcut getCurObj(Uri uri, String[] Projection,  
String Selection, String[] Selection_Args): 

 call(*..*Cursor* *..*.query(..))   
|| call(*..*Cursor* *..*.*Query(..))) 

 && args(uri, Projection, Selection,  
Selection_Args,..) && NotNewLogger(); 

  
Object around(Object tar, Uri uri, String[] Projection,  

String Selection, String[] Selection_Args): 
 target(tar) && getCurObj(uri, Projection,  

Selection, Selection_Args){ 
//... 
//... 

 ContentValues cont = getAccess();//From SharedPrefs 
 if (cont.containsKey(uri.getAuthority())){ 
  start = System.nanoTime(); 

String level = 
cont.get(uri.getAuthority()).toString(); 

  if (level.equals("ALL_ALLOW")){ 
   ret = proceed(tar, uri, Projection,  

Selection, Selection_Args); 
  }else if (level.equals("ALL_BLOCK")){ 

ret =  proceed(tar, getEntityUri(uri), 
Projection, Selection, Selection_Args); 

  }else if (level.equals("RESTRICT")) { 
   checkSRestrict(..);//Schema Restriction 

   //... 
   checkCRestrict(..);//Column Restriction 

   //... 
   checkERestrict(..);//Entity Restriction 
  

}else{ 
    
  } 
 }!

Figure 2: Advice on a Query Joinpoint that Shows How the
Controller Stub Performs Access Verification

be available due to restrictions. To solve this problem, we
instrument all the functions that access cursor information
directly. The advice on these joinpoints tests if the column
requested is available and if it isn’t, the column will return
a empty string. This has proven to work well in practice to
ensure that applications do not crash due to the imposed
access restrictions.

4.1.2 Query Re-Writing
Android creates a proper SQLstatement after the request

has passed the permission checks. Since our system oper-
ates at the highest level, we rewrite the intended query by
altering and/or supplying new CRUD function argument(s).
These functions contains Uri, Projection, Selection Selection-
Arguments and Content Values parameters.

In SCHEMA restriction, priVy compares the query Uri
with the restricted schema, if matched, the query is simple
blocked otherwise the system allows it to execute. The code
snippet is shown in Figure 3.

The query-rewriting module is triggered when the initial
query is projected on column(s) and/or entities outside its
access restriction. In a query function a projection argu-
ment can take an array of column names or null (indicating
all rows in a table should be returned). Armed with the

// qSRestrict contains list of restricted Uri 
public Uri checkSRestrict(ArrayList<String> qSRestrict,  

Uri uri, ContentResolver resolver){ 
 if (qSRestrict.contains(resolver.getType(uri))){ 
  uri= getEntityUri(uri); 
 }else{ 
  //...   
 } 
  //...  
}!

Figure 3: Schema Restriction Check on a Query Function

column-level access restriction, the Controller stub executes
checkCRestrict function and re-writes the query based on
the following rules;

1. If projection is not null - the stub checks for the in-
tersection of the projected column(s) and the restricted
column(s) and then removes them from the projection
list as shown in Figure 4.

2. If the prohibited column is the only column
to be projected - the function will be blocked com-
pletely. This is because exchanging the prohibited list
with null will return all the columns including the pro-
hibited ones.

3. If projection is null - For query, the stub checks
the intersection of the columns of the return cursor
and the restricted column(s). If found, the intersected
column(s) are removed and the query continues with
the remaining column as shown in Figure 5. For Up-
date and Insert, restricted column are prevented from
database write thus key sets of the content values are
compared against the restricted column and removed
if there is an intersection. Delete operations do not
require column projection.

 if (Projection!=null){ 
  if(myMap.keySet().contains(resolver.getType(uri))){ 
   String val = myMap.get(resolver.getType(uri)); 
   for(String str: Projection){ 
    if(!(resolver.getType(uri)+str).equals 

(resolver.getType(uri)+val)){ 
     newProj.add(str); 
    } 

}finProj = newProj.toArray(new 
String[newProj.size()]); 

  }else{ 
   finProj= Projection; 
  } 

} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Column-level Restriction with Not-Null Projection

Selection and Selection-Arguments indicate the WHERE
clause column(s) and value(s). The user can restrict access
on some predefined values, e.g., to certain account types,
whitelisted contacts, etc. For the most part, we don’t test
or nullify these arguments, but rather we enforce the new



 if (ret instanceof Cursor){ 
  Cursor cur =(Cursor)ret; 
  if(cur.getCount()>0){ 
   String[] pNames = cur.getColumnNames(); 
   if(myMap.keySet().contains 

(resolver.getType(uri))){ 
String val = 
  myMap.get(resolver.getType(uri)); 

    for(String str: pNames){ 
     if(!(resolver.getType(uri) 

+str).equals(resolver.getType 
(uri)+val)){ 

      newProj.add(str); 
} 

    }finProj = newProj.toArray(new  
     String[newProj.size()]);   
      

}else{ 
    finProj= null; 
   } 
  } 
 } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Column-level Restriction with Null Projection

specification by concatenating our restriction to an already
established WHERE clause. For instance, an application
might be restricted to only query contacts from account-
type “com.google“ and we simply ensure that this is enforced
by influencing the WHERE clause. If this restriction in-
volves only one entity, the controller stub appends it with
an “AND” operator to the function’s WHERE clause, if not
null. If the WHERE clause is null, however, the stub then
substitutes the null with the new restriction, and the func-
tion proceeds with this new value. On the other hand, the
situation is more challenging when there are more than one
entity restriction and it applies to different tables (e.g., ac-
count type (Raw Contacts) and lookup key (Contacts)). In
typical SQL we can perform complex joins on the different
tables. However, on content providers such operations are
very limited. To solve this, we extract the primary key (and
foreign key where necessary) from each of the tables and use
them as the parameter(s) for the target query’s WHERE
clause as shown in 6.

public String checkERestrict(Uri uri, ContentResolver resolver){ 
 String finSel= null; 
 if (uri.getAuthority().contains("contacts")){ 

 // for each entity restriction,   
 // getContactIds(..) gets its primary key column.    
 //The intersection of the results is return in fin 

  String fin = getContactIds(resolver); 
  if(fin!=null){ 
   if(uri.equals(ContactsContract.Contacts. 

CONTENT_URI)){ 
   finSel = ContactsContract.Contacts._ID +  

" IN ( "+fin+" )"; 
}else if (uri.equals(ContactsContract.Data. 

CONTENT_URI)){ 
    finSel = ContactsContract.Data. 

RAW_CONTACT_ID + " IN ( "+fin+" )"; 
   }else{ 
    finSel = ContactsContract. 

RawContactsEntity.CONTACT_ID + " IN ( 
"+fin+" )"; 

   } 
  } 
 } 
 return finSel; 
}!

Figure 6: Code Snippet Showing Entity Restriction for Con-
tacts Provider

For example, consider the query“ ID from contacts WHERE

lookup key = value”and the query“ ID and RAW CONTACT ID
from raw contacts WHERE account type = value”. The in-
tersection of ID and RAW CONTACT ID in these query
results will be the new WHERE clause for the target CRUD
operation.

For delete and update functions, a developer may or may
not supply the WHERE clause and/or its argument. Ac-
cording to a user’s preferences, our system can enforce re-
strictions on when and where delete operations can occur by
reflectively invoking a new delete function within the join-
point on the target object. After it returns, the new return
value is supplied as the return value of the joinpoint’s advice
as shown in Figure 7.

pointcut deleteInst(Uri uri):call(* *..*.delete(..))  
 && NotNewLogger() && args(uri,..); 
    
Object around(Uri uri, ContentResolver tar):  
 deleteInst(uri) && target(tar){ 
 if (access.containsKey(uri.getAuthority())){ 
  // 
   // 
  }else if (level.equals("RESTRICT")){ 
   ContentResolver resolver = null; 
   if (tar instanceof ContentResolver){ 
    resolver = (ContentResolver)tar;  
   } 
   if (resolver!=null){ 
    //check Schema Restriction 
    uri = checkSRestrict(qSRestrict,  
     uri, resolver); 
   } 
   if (!uri.toString().contains("/0")){ 
    Log.d(uri.toString(), "here3"); 
    //check Entity Restriction 
    String finSel = checkERestrict(uri, 
      resolver); 
    if(finSel!=null){ 
     //populate selection 
    } 
   String[] selArgs = (String[])args[2]; 
   Object[] params = new Object[]{uri,  
    sel, selArgs}; 
   Class clazz = thisJoinPoint.getSignature(). 
    getDeclaringType(); 
   //Reflectively Recreate Delete  
   //function with new selection and  
   //return number of rows deleted  
   try { 
    String methName = thisJoinPoint. 
    getSignature().getName(); 
    Class[] paraTypes  
     =getMeth(thisJoinPoint); 
    Method method  
     =clazz.getDeclaredMethod(methName,  
     paraTypes);  
    ret = method.invoke(tar, params); 
    delRet= true; 
   }catch (Exception e){ 
    delRet=false;  
    e.printStackTrace(); 
   }  
  // 
 } 
 return ret; 
}!

//

//

//

true;
e

Figure 7: Code Snippet Showing Query Re-writing for
Delete Function

4.1.3 Database Auditing
Currently, Android does not provide any form of auditing

on the native provider. As discussed in Section 2, applica-
tions are considered individual users with different user IDs.
It is important to keep track of which applications perform
which actions on system resources, especially since these ap-
plications are typically created by different developers and
may manipulate the same data with few restrictions.

In our prototype implementation of priVy, we introduce
auditing using a file attached to the Controller app called



after(Uri uri, String[] Projection, String Selection,  
String[] Selection_Args) returning (Cursor ret):  

 getCurObj(uri, Projection, Selection, Selection_Args){ 
 //... 
 if (ret.getCount()>0 ){ 
  String vals=null; 
  StringBuilder stb = new StringBuilder(); 
  if(Projection!=null){ 
   for(String str: Projection){ 
    stb.append(str); 
    stb.append(","); 
   } 
   
  } 
  vals = stb.toString(); 
  String args=null; 
  stb = new StringBuilder(); 
  if(Selection_Args!=null){ 
   for(String str: Selection_Args){ 
    stb.append(str); 
    stb.append(","); 
   } 
  } 
  args = stb.toString(); 

 String audit = "Time"+Long.toString(System.nanoTime()) 
+" Uri "+uri.toString() +" Values "+vals + "Selection" 
+Selection + " Selection_Args "+ args+ 

  thisJoinPoint.getSignature().getDeclaringTypeName()+ 
"."+thisJoinPoint.getSignature().getName(); 

  Log.d("R-DAC","Query Audit- "+audit); 
  //… 
}!

Figure 8: Instrumentation Code Snippet for Auditing Query
Operations

the auditLog. We implement this by injecting the auditing
function after the CRUD function has executed and returned
a desired result. For insert, an “after” advice will request for
the returned Uri and then parse it get the row id. This pack-
age name, row id, together with Uri name, Content Values
and time stamp are written to the auditLog file.

On update, the return value is the number of rows affected
rather than the Uri. Thus, we need a global variable to keep
track of the row lookup ids (rowid) affected by the update
function. We use this global rowid, together with package
name, Uri name, Selection and its Arguments (if any), Con-
tent Values and time stamp as an audit file entry. This also
applies for Delete operations. Query operations return a
Cursor, thus we keep the audit of the query parameters as
well as the number of rows in the cursor. We do not track
the IDs of the columns because it may or may not be part
of the projection list. The code snippet for auditing query
operations is shown in Figure 8.

Apart from its major objectives, our controller stub fur-
ther checks for malformed strings in arguments passed to
the CRUD function. This is important so as to prevent the
denial of service attack mentioned in Section 3. This func-
tionality checks for special characters in the content value(s)
of an insert or update function. It then triggers warning to
the user and he/she can opt to remove such special charac-
ter.

4.2 Controller App
The controller app running on a separate process coor-

dinates the content provider restrictions for targeted appli-
cations. Our aspects are written as generically as possible
to integrate into any Android app as well as work for all
the native providers. The controller app provides an inter-
face for choosing the access levels and further access restric-

tions on schema, column or entity, thus saving the cost of
re-instrumentation in case changes need to be made. This
significantly improves the usability of our approach.

When an application is installed, the user needs to register
it with the controller. Its user interface (UI) exposes the
available access level/restrictions for the user to choose from.
After selection, the values is set for the target application in
a shared preferences XML file maintained by this controller
app. The Controller stub queries these files at runtime. The
controller app maintains three different XML files for the
access level, constraints, and the arguments, as shown in
Figure 1.

1. Access.xml - this file contains entries for all registered
instrumented apps. It takes the concatenation of pack-
age name, provider names and CRUD function name
as the key which is also the record identifier RID, while
the value contains the access level as ALL ALLOW,
ALL BLOCK or RESTRICT. Listing 1 shows an ex-
ample of key:value pair in Access.xml file.

2. Constraint.xml - If the access level is set to RESTRICT,
the schema, column or entity constraint has to be pro-
vided. This constraint is registered in constraint.xml.
Its entries are the RID as provided in Access.xml file
and the values are the constraints separated by com-
mas as shown in Listing 2. Empty brackets indicate
there is no constraint on the element. The SCHEMA
constraint has to take complete Uri string names, while
the COLUMN and ENTITY constraints contains the
Uri and column name, each of which can have zero or
more constraints.

3. Argument.xml - As mentioned above, the ENTITY
constraints are enforced in the WHERE clause of the
SQLStatement. Thus for each entry in the Constraint.xml
file that contains a record for an ENTITY constraint,
there must exist an record in the Argument.xml file
that provides the argument value(s). For example,
if Constraint.xml contains a record as shown in List-
ing 2, the Argument.xml file will have a corresponding
record as shown in Listing 3. This constraint ensures
an app is restricted from querying contacts WHERE
account type is “com.google”.

Listing 1: Entry in Access.xml

key - com.bbm:contacts:query:
value <RESTRICT>

Listing 2: Entry in Constraint.xml

key - com.bbm:contacts:query:
value < SCHEMA(),

COLUMN(vnd.android.cursor.dir/contact:
display_name),

ENTITY(vnd.android.cursor.dir/raw_contacts:
account_type)

>

Listing 3: Entry in Arugument.xml

key - com.bbm:contacts.query:
value < ENTITY((vnd.android.cursor.dir/raw_contacts:

account_type) :com.google)>



Apart from creating and managing access verification in-
formation, the controller app also manages the auditLog
file.

5. IMPLEMENTATION
We implemented the prototype of our approach in Python,

Java and AspectJ as the weaving framework. The Controller
app is written as a standalone Android application with
three shared preference files that store the access level, con-
straints, and its arguments for an instrumented app. This
app does not require any permissions to install. For the Con-
troller stub, the instrumentation process is implemented us-
ing Python scripts which automate application unpacking,
repacking and signing, while the weaving aspect is written
using Java/AspectJ.

Android apps are shipped as a single zip file called an apk,
which contains the main classes.dex file and other resource
files. The classes.dex is a highly optimized compressed file
that contains the Dalvik bytecode which is parsed and in-
terpreted by the Dalvik Virtual machine at runtime. It is
created by removing redundant information from the app’s
compiled Java classes. The AspectJ framework, on the other
hand, does not understand the Dex file format. Thus, to
weave-in the Controller stub, we need to unpack from Dex
to Java class files.

The automated instrumentation processing makes use of
an open source Dalvik translator called “dex2jar” [3] for the
unpacking, repackaging, and app signing. This processing is
set up on a Linux system with Java and “ajc” compilers in-
stalled and the AspectJ library and the Android SDK on its
class-path. The weaving module takes the unpacked classes
as input which after recompilation executes the repackaging
and resigning modules, respectively.

We developed generic aspects that can be woven into any
Android application to enforce access control on any of the
Seven native providers. However we limited our testing and
evaluation to contacts and calendar providers. These two
providers contain valuable and sensitive data for both the
device user and any third party associated with the user. Ac-
cording to [9], the contact information is by far the biggest
privacy concern of all the sensitive data found on smart-
phones. The contacts provider exposes different kind of data
via its numerous Uris. These data are contained in three
tables (Contacts, Raw Contacts, Data) under the contacts
database, while the calendar provider on the other exposes
five tables (Calendars, Events, Attendees, Reminders, In-
stance) from the calendar database through its URIs.

Our aspect has a total of 11 pointcuts which corresponds
to the 9 method calls as shown in Table 1, one pointcut for
application context, and one for the aspect itself. It also has
a total of 16 advices for these pointcuts and numerous Java-
related methods that help the functionality of the advices.

6. EVALUATION
The target of our evaluation covers two main objectives;

Overhead and Application Crash. priVy is developed as a
User-centric solution with the aim of providing a reliable
means of securing and restricting access to native database
objects. The goal is to ensure priVy works on a diverse
group of applications with minimal overhead. More so, we
want to ensure the instrumented app does not crash as a
result of the weaved controller stub.

We downloaded the top 350 applications from Google Play
[2] and choose 76 apps with read/write permission to either
the contacts or calendar providers. Our samples are instru-
mented and repackaged with new sign-in keys. We assess
their static overhead in terms of weaving time and number
of joinpoints created.

We also measure the runtime overhead, which is the time
it takes to execute each of our joinpoint’s advice. We devel-
oped a test application that triggers all the advices in our
aspect (since most of the sample apps trigger only one or
two of them) and measured their execution time. Finally we
evaluate app crashes by executing each of the instrumented
applications. Our testbed is a Samsung tablet running on
the Android 4.4.2 kernel. It has some saved contacts under
the device’s main gmail account, local phone numbers, and
others imported from one extra exchange account.

6.1 App Execution
We then test run all the 76 instrumented apps on a three

round testing (total 228 execution) on the test bed and ex-
amined them for app crashes that can be directly linked
to the instrumentation stub. The testing involves changing
the different access levels - ALL ALLOW, ALL BLOCK and
RESTRICT. Each app is manually installed, executed and
profile created for those requiring one. We interact with
them using touch events, text inputs, and various system
events like calls. The testing period for each app ranges
between 15 to 20 minutes, depending on the initial setup
required by the app.

In the first round of testing, we set the access policies for
all the 76 apps to ALL ALLOW. Our first observation is five
apps (Chase, SendHub, All State, BlueBird, Citizens) fail to
execute or connect to their server in the first round of test-
ing. An examination into these groups revealed that mostly
they are vendor apps like mobile banking. Such apps, for
security reasons, do not execute when the signature changes
or have broken resources. They fail to execute not because
of our instrumentation stub but because of a change in the
application file, thus we eliminate these from further testing.

The second group of seven apps (Sirma Bible, Docusign,
Autodesk, FaithComesbyHearing, Zillow, Backgrounds, Jiffy)
did not make any attempt to query the contacts or calen-
dar database, even though they requested READ and/or
WRITE permission. Thus, they were eliminated too.

The final group executed correctly in all the 3 rounds of
testing. We randomly change different combination of ac-
cess restrictions that will trigger the query re-writing mod-
ule during the manual execution and check for app failure.
Within the execution period, we observed that all the 64
apps in this group invoked one or more of our joinpoints.
For instance, the BBM app requested READ CONTACT
permission and it also asks users explicitly for access to con-
tacts on the setup window. When we BLOCK all contacts,
it was not able to access any. Similarly for RESTRICT, it
was only able to view contacts from the gmail account. This
is the same for other apps like KIK, Pinterest, Mr. Number,
AVG AntiVirus, AutoCard, Vine etc. The Sunrise app uses
the calendar provider to manage and organize events. We
successfully limited the events that can be viewed by this
app based on Event ID.

We have observed that ≈ 82% of the apps in our sam-
ple perform only database read (query) even though 60% of
them request both READ and WRITE permissions.



Figure 9: Relationship Between Instrumentation Time and Extra Joinpoints

6.2 Static Overhead
Instrumentation entails weaving new code into a binary

and optimization becomes essential in order to avoid bloat-
ing the existing code. Specifically, the nature of pointcut
signatures can have adverse effects on the number of join-
points to be created and wildcards that designate all (*)
either in the parameter(s), names, or return type broaden
the scope of joinpoint matching. As mentioned in section
3, Android has restricted native database access to very few
libraries, and as such we avoided using wildcards where nec-
essary and used more specific signatures instead.

In this test, we measured the time it takes to perform
bytecode weaving as well as the number of joinpoints that
are created. The bytecode weaving involves class parsing,
joinpoint matching and insertion of advices for every class
on the jar path as specified by the weaving aspect. On av-
erage it takes 15 seconds weaving time on our test platform
to process each sample app, with the highest and lowest
being 65.5 and 3.3 seconds respectively. The plot in figure
9 showed no correlation between instrumentation time and
the number of joinpoints created. Nevertheless, we can see
from the cluster that almost all the apps are weaved in less
than 30 seconds. Manual investigation into the packages of
the outlier applications indicates they contain a very large
number of classes, thus requiring more time for the compiler
to parse and match the joinpoints. Overall, we find the in-
strumentation time to be very acceptable as the maximum
is slightly above 60 seconds.

In AspectJ weaving, for every matched joinpoint, the com-
piler adds a call to its corresponding advice. This is in addi-
tion to any Aspect-specific and Java-based method attached
to the aspect class. Based on our sample set, we recorded an
average of 1032 joinpoints created, with the highest being
7407 and the lowest 199. We find our joinpoint’s overhead of
approximately 1000 is on the high side considering there are
about 16 advices. On investigation we find the pointcut that
gets application context is the culprit. Though not part of
the main functionality of our aspect, this pointcut serves as
a helper that assigns context into the aspect’s global context
variable.

The Aspect class in not part of the traditional Android
API and thus cannot instantiate a context. On the other
hand, our advices requires it to get a ContentResolver for
nested SQLstatements and the processing of ContentProvider-
Operations functions. Thus, we created this pointcut around
the onCreate method of every Activity to get its context.
This ensures at every point during the app’s execution, a
context is available to the aspect class. We find this method
to be very reliable since even if one activity dies, the next
activity will provide the needed context for the aspect, but
not necessarily efficient.

6.3 Runtime Overhead
In this evaluation, we examined the impact of the intro-

duced code on the app performance on the device at runtime.
This is measured as the extra time it takes to run the advice
on a joinpoint. Our advices verify access levels and enforce
restrictions where necessary.

As mentioned in section 3, priVy provides three access
levels, and when the access level is set to RESTRICT, zero
or more schema, column and entity restrictions can be en-
forced. Thus, considering all this criteria, we expect differ-
ent possible combinations for each of the CRUD function.
It is important to note that this runtime overhead remains
the same irrespective of the application executing because
the advice code does not change. However, it is only af-
fected by the access level and constraints enforced by the
user. The more constraints there are, the more instructions
are traversed and the greater the size of the SQLstatement.

To make this experiment possible we develop a testing app
that triggers all our joinpoints and we run it many times
with different combinations as shown in Table 2.

Each point on the table represents the average time in
nanoseconds (ns) required to execute each CRUD function
based on at least one restriction.

ALL BLOCK and ALL ALLOW incurs zero runtime over-
head to process thus these are excluded from table. The
times are computed by Java’s System.nanoTime(). We set
the start time at the beginning of the “around” advice exe-
cution and an end time at the beginning of its “after” advice.
This ensures we take the time after the method has returned



Table 2: priVy ’s Average Runtime Overhead Given Various Access Restrictions

Restrictions Insert (ns) Update (ns) Query (ns) Delete (ns)
1 Schema 59 40 64 47
1 Column 53 45 62 50
1 Entity 23 38 92 54

1 Schema , 1 Column 57 48 58 49
1 Schema , 1 Entity 76 47 70 69
1 Column , 1 Entity 74 50 73 67

1 Schema, 1 Column , 1 Entity 62 70 75 54

Average 57.71 48.29 70.57 55.71

and before the next instruction. The difference between the
start and the end time is the runtime overhead per joinpoint.

Our experiments indicates it takes an average of 70.57
nanoseconds to execute the joinpoint on update, 55.71 for
delete, 48.29 for insert, and 57.71 for query, with imposed
restrictions. Overall our joinpoints take an average of 58.07
nanoseconds to execute any of their advice.

Since the static overhead gave us an average of 1032 join-
points created, our instrumentation can incur a maximum
runtime overhead of 0.06 milliseconds if all the joinpoints
are executed in a single app. We find this overhead to be
negligible and not be noticeable by users.

6.4 Access Policies
The access policies exposed by our Controller app enable

users to protect the security and privacy of their devices and
its data.

For instance, entity restriction can help protect devices
from adding malicious contact on protected account types
such as google.com or exchange. The entity restriction is set
with an appropriate argument e.g., “com.google”. Denial of
service attacks due to malformed SQL can also be checked
and special characters removed in the content values of an
insert or update function.

Both Schema and Column restrictions can help reduce the
exposure of clearly mapped data, e.g., enforcing schema re-
strictions on an email Uri can block a target app with access
to Contacts from mapping contacts phone numbers and their
email addresses. However, to attain absolute protection for
some chosen contacts, the user can set up entity restrictions
on individual names, IDs or groups. This will completely
safeguard whole record(s).

Column restrictions can also protect permission leaks. As
mentioned in Section 3, enumerating account names and
types can give apps access to all accounts on the system
just like those provided by getAccount permission. Thus, a
user can set a policy to restrict these columns. This policy
can further be optimized by enforcing entity restriction such
that apps can access only their account name and types.

6.5 Limitation
priVy performs instrumentation via application repackag-

ing and thus depends on the fact that the app will be cor-
rectly translated before and after instrumentation. However
this may not be true for apps with:

1. Anti-repackaging techniques that detect and crash the
translation process, often detected at compilation time.
To deal with such problems, we use a well documented
and widely used open source utility dex2jar. So far

we have not encountered this issue, but it remains a
possibility.

2. Signature verification that detects changes in the de-
veloper’s original signature at runtime. Such an app
may not necessarily crash but will fail to either render
its activity or connect to its server. We have encoun-
tered some of these apps, which are mostly banking
applications. Support for such applications is outside
the scope of our research.

7. LITERATURE REVIEW

7.1 Android SQLite
The sensitivity of data and the disastrous effect of its

breach has led RDBMSs to evolve over the years, incorporat-
ing different levels of security granularity at schemas, column
and entity level. SE-PostgreSQL [15] for instance integrates
PostgreSQL with SELinux such that every database object
has a security context indicating its privilege and attributes.
Oracle’s virtual private database [10] and INGRES [22] on
the other hand support fine grained access through runtime
query modification. SQLite is an RDBMS which by design is
a server-less jumbo file attached to an application. Its secu-
rity layer is completely provided by the Android OS through
the READ/WRITE permission system on the file. Although
the file is protected from unauthorized access, privileges on
the individual objects (schema, column, entities) are not seg-
regated. SE-SQLite [16] like SEPostgreSQL is developed by
integrating SELinux into Android SQLite. It provides low-
level access control on database schema and tuples. Our
work, though very much related in objective, differs com-
pletely in implementation. Theirs integrated the access poli-
cies on the database engine, while we enforced the access
constraints at the application level by hooking the CRUD
method calls and forcing query-rewriting where necessary.
Our system does not require flashing a customized ROM,
thus it is a more accessible and easily deployable solution.

7.2 Instrumentation
Instrumentation has been a vital tool for enforcing secure

policies on Android systems both in static and dynamic con-
texts. Largely due to ease of application repackaging, static
bytecode weaving at the application level has gained a lot
of significance. Dr. Android [13] retrofits Android permis-
sions using bytecode instrumentation. Capper [25] tracks
sensitive information flow from source to sink while Ret-
roSkeleton [8] enforces various flexible security policies at
runtime. Appguard [4] and [5] both provides customizable
user-policies through on-the-device application repackaging.



Most of these solutions have the same aim of reducing per-
missions associated with an Android app in general, whereas
priVy is very specific to access control on SQLite database
and its objects of which permission control alone cannot
achieve.

Dynamically, FireDroid [19] and NJAS [7] use ptrace to
attach their policy monitor to the target process. In both of
these solutions, security policies are defined at a lower level
by re-mapping the system calls to higher level API calls. An-
droid PIN project also supports dynamic binary instrumen-
tation. TISSA [26], Aurasium [24] Apex [17], all developed
different security policies mostly with respect to reducing
permissions by extending the Android framework. COM-
PAC [23] segregates permissions within the components of
an application. AdDroid [18] segregates advertisement and
the Android framework by introducing new advertisement
APIs and permissions while AdSplit [20] executes the ad-
vertisement code in a different process.

ASM [11], SEAndroid [21], MockDroid [6] and AppFence
[12] are operating system-centric solutions that developed
integrated security policies at the kernel and Dalvik code.
While the security policies suggested above can be used to
either allow or deny access to the database file, that cannot
address the issue of access control on the database object.

8. CONCLUSION
In this paper we presented priVy, a user-centric approach

to enforcing object level privilege on Android native providers.
Currently, database objects are not treated differently from
their main source, meaning when access is granted to a
SQLite database file, that access extends to all the objects
encapsulated within it. The native databases contains enor-
mously important data that should not be lumped together
as a single entity, hence our motivation to segregate their
access control. Our system priVy is designed to guarantee
a user’s privacy is secured in an accessible and highly us-
able way. It does not require operating system extensions
nor does it tamper with the framework code, making it a
much more practical solution than its contemporaries like
SE-SQLite.

priVy leverages static bytecode instrumentation to weave
in controlling code in database CRUD functions. The con-
troller stub ensures only user approved schema, column,
and/or entities are accessed by an instrumented application.
When these CRUD operations are intercepted, the attached
stub performs access level verification, query-rewriting where
necessary, and proceeds with the function execution. It also
performs database auditing when the attached app accesses
any of the encapsulated objects. Our evaluation results
demonstrated priVy incurs a minimal overhead of 15 sec-
onds instrumentation time and a very negligible execution
time overhead.
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